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1 Introduction

In this work, the reconstruction of a 3-D image from
attenuated parallel-beam projections is investigated for
fully 3-D data acquisition geometries.

In a partially simplified model, the measurements pro-
vided by a SPECT scanner are considered to be attenu-
ated parallel-beam projections of the activity distribution
f. They are mathematically described by the formula

—+oo —+ oo
p(8,s) =/ dt f(s+t6) exp (—/ dlu(§+lQ)) (1)
— oo t
where @ is the direction of projection defined by the ori-
entation of the camera and the collimator holes and pu
is the attenuation function. Vector s is orthogonal to @
and is used to specify detector locations for the p(@,-)
projection.

A simplication of the relation (1) between the data and
the image f occurs when the activity is contained in some
convex region where p is constant. We will assume that
this condition holds. In this case, the data p(8,s) can be
modified into

$:0=0
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where po is the value of p in the activity region. In
the literature, g is referred to as the exponential X-ray
(parallel-beam) projection of f in the direction . The
relation between p and g can be written in the form

where m, (8, s) is calculated from the attenuation map.
See [1] for details. Even if the attenuation map is not
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known, p can be converted into g in a reasonably accurate
way using the consistency conditions for the exponential
X-ray transform [2].

The set of directions € for which p is measured defines
the data acquisition geometry. We use  to denote this
set. By definition, 2 is a subset of the unit sphere. The
most common set €2 encountered in SPECT imaging is the
great circle (360° scan) or half great circle (180° scan) of
directions orthogonal to the patient bed. However, fully
3-D geometries are also possible, such as the RSH-SPECT

scanner [3] .

Image reconstruction from exponential X-ray projec-
tions on a great circle has been widely studied over the
last twenty years and is now well-understood, especially
thanks to the significant work of Tretiak and Metz [4] and
Pan and Metz [5, 6]. In fully 3-D geometries, the situa-
tion is very different. To our knowledge, only three works
concerning exact fully 3-D reconstruction from exponen-
tial X-ray projections have been published [7, 8, 9]. The
most general of these assumes that the set  is a union
of great circles.

Currently, the class of data sets for which a closed-form
inversion formula of the imaging equation (2) exists is
unknown. It is not even known what conditions a data
set must satisfy to be complete. The 3-D reconstruction
theory for X-ray projections (u = 0) [10, 11] is not easily
modified to handle exponential X-ray projections.

We have derived a closed-form inversion formula for the
3-D exponential X-ray transform which is valid for any
data set 2 made up of half great circles. A basic example
of such a set is the half equatorial band illustrated in
figure la; our presentation concentrates on this example.

Our results generalize all previously published results on
the exponential X-ray transform. They constitute one
step further towards a full understanding of this trans-



Figure 1: (a-left) Ilustration of the half equatorial band in-
cluding a half great circle. (b-right) Set A of vectors n corre-
sponding to all the half great circles in 2.

form?! which is an important mathematical tool in SPECT
imaging and in Intensity Modulated Radiation Therapy
(see [12] for more details on this latter application).

The basic idea is to combine a recent result on inversion
of 180° scans [13] with the TTR concept of Ra et al. [14].

2 A half great circle

Let C(n, E) be the right-oriented half great circle which
starts at E and is orthogonal to the unit vector n on
the unit sphere. See figure 1. Let b = OF where O is the
center of the sphere and let @ = n xb. From the results in
[9] and [13], it can be shown that f satisfies the following
integral equation

f(z) = fo(z,n, E) + w(z,n, E) * f(z) (4)

where fo(z,n,E) and w(z,n,E) are defined as follows.
The function fo(z,n, E) is obtained by filtered backpro-
jection (FBP) of the projections on C(n, E):

folz,n, E) =/

df e g7 (4,2~ (z-60)8) (5)
¢(n,B)

with

g7 (8,s) = / ds' g(8,s —s")d(s' -n)k, <§/ “(n % Q))
58=0 _

(6)

where k, is the notch filter used in the FBP formula of

Tretiak and Metz for the 2-D exponential Radon trans-
form [4], i.e.

ku(r)=1/2 /

Iv[> o /27
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The convolution kernel w(z,n, E) =d(z -n)w(z - a,z-b)
where 4 is the 1D Dirac function and

. sinh gov o (2sinh pov
w(u,v) = — q(u) + ﬁ{iuov _
sinh pg(v +iu)  sinh po(v — 7 u) } )
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In the above definition,

q(u) =/ do isign(o) ™7 (9)
R

is the convolution kernel of the Hilbert transform. Note

that w(z,n, F) is an odd function in z, i.e w(—z,n, E) =

—w(z,n, E).

Basically, for exponential projections g(f, s) measured on
the (360°) great circle C(n, E)NC(n, —E) the Tretiak and
Metz FBP gives an accurate reconstruction f. However,
on the (180°) half circle 8 € C(n, E), the reconstruction
gives an incorrect fo. The images fy and f are linked by
w according to equation (4).

3 An equatorial band

The discussion is now focussed on the half equatorial band
of figure la. Let A be the set of unit vectors corresponding
to all the half great circles in €. See figure 1b. For each
vector n, the starting point of the half great circle is at
OFE = cosne, + sinne, with tann = —Q-gy/ﬂ -e,.

For each half great circle in 2, an integral equation sim-
ilar to (4) can be written. Integrating equation (4) over
all n € A, one obtains an integral equation for f which
involves all the data from Q:

f(z) = folz) + W(z) * f(2) (10)
with
folz) = ¢ / dn fo(z,n, E), (11)
A
and
W(z)=c / dnw(z,n,E). (12)
A
In these equations, ¢ is a normalization constant:
czl// dn =27 (1 — cos by) (13)
A

where 6y is the half aperture of the band.



Using the same argument as in [9], it can be shown that
fo(z) can be calculated in a fully 3-D FBP way. The
expression is

folz) = A 8 ezl g (g s — (z-0)0)  (14)

where ¢ (8, s) is obtained from g(@,s) by 2-D convolu-

tion:
9" (8,s) = / ds' g(8,s —s') hu(8,5'). (15)
8'-6=0
The convolution filter h,, is given by
k
g kulllsl) e 8y
hu(Q,é) — ||§|| ||§|| (16)
0 otherwise

As readily observed from its definition, the filter A, is a
generalized function with singularities at s = 0. The im-
plementation of equation (15) therefore requires the use
of some regularization technique. For an accurate compu-
tation of g7 (8, s) from samples of g(#,s) on a Cartesian
grid, we recommend the implementation of (15) in the
Fourier domain with some apodizing frequency window,
such as the Hanning window. Such an implementation
requires the knowledge of the Fourier transform of the
filter hy,. It is shown in [9] that this transform is

Ho(6.v) = / | dseTm(9.)
5:6=0

C

(17)
where C,(6) is a subset of the great circle C(6) of unit
vectors orthogonal to 6:

Cu@ =CO\{n€CO) : |z (nx8) <po/2r}. (18)
Note, in particular, that C,(f) is empty when ||v|| <

to/2m because |v - (n X )| < po/2m for any n in this
case. Therefore, H,(6,v) = 0 if ||v|| < po/27.

4 Solution of the integral equation

In this section, we show that the integral equation (10)
admits a unique solution which can be expressed in the

= —/ dnw(n)|lv-(nx8)|, v-0=0
2 Je,ona

form of a Neumann series. First, note that the kernel
W (z) (equation (12)) is an odd function, i.e. W(—z) =
—W (z) because w(—z,n, E) = —w(z, n, E).

Let R be such that f(z) =0 for |z| > R and let
1 ifjz| <R
x(z) = { =

0 otherwise

(19)

In practice R is always finite since f is physically re-
stricted to a finite region. Using x, the integral equation
(10) can be rewritten in the form

f=xfo+txWxf)=xfo+Kf (20)
where K is an operator such that K f = x(W x f). Since

W is odd, we note that K is skew-symmetric.

Using the same arguments as those developed in [13], one
can show that K is bounded. Let v = 1/(1+||K||?). We
introduce a modified operator K = (1—=%) I+~ K where
I is the identity operator and rewrite (20) in the form

f=vxfot+Kf. (21)

By definition, ||K|| < 1. Therefore, the integral equation
(21) admits a unique solution

f=7Zf(IXf0-

=0

See [15] for mathematical details.

(22)

The reconstruction of f from formula (22) can be imple-
mented in the following way:

e Step 1: Compute x fo from the data g using (14).
e Step 2: Compute f, = Kan—l forn=1,...,N.

N
e Step 3: Compute fy > yx fo+7 Z Fn-

n=1

The function fy represents the reconstructed image. The
accuracy || fn — f]| of the reconstruction depends on || K]||.
In the absence of noise, the smaller || K|, the smaller || K]||
and thus the smaller the number of terms N required for
a given accuracy because the series converges faster.

Figure 2 shows results obtained from computer-simulated
projections of a heart phantom made up of ellipsoids, with
20% activity in the ventricules. The attenuation coeffi-
cient was g = 0.0152 and the half aperture of the band
was 6y = 25°. There were 120 x 30 projections (each of
128 x 128 square pixels of side 1.2 mm) and the recon-
struction was performed on a grid of 128% cubic voxels of
side 1.2 mm.



Z = k4
Z = k4
£ = B4

Figure 2: (top) Original phantom, (middle) FBP reconstruc-
tion fo using the data on 2, (bottom) reconstruction using 10
terms of the Neumann series (equation 22). Reconstruction
time: about 5 min. cpu per iteration on a SUN ULTRA 10.
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